Articles

Cheminformatics, QSAR, RDF, Chemical databases, Web services

2025 

  • Filipovska, J. et al. P18-65 Advancing the Grouping and Harmonization of Similar Key Events in the AOP Wiki: Ontology-Based Key Event Component Combinations as Catalysts for Integration. Toxicol. Lett. 411, S214–S215 (2025).
  • Coca-Lopez, N. et al. Open and FAIR Raman spectroscopy. Paving the way for artificial intelligence. Preprint (2025) DOI: 10.26434/chemrxiv-2025-0q2mt.
  • Lellinger, D. et al. An Interlaboratory Study to Minimize Wavelength Calibration Uncertainty Due to Peak Fitting of Reference Material Spectra in Raman Spectroscopy. Appl. Spectrosc. (2025) DOI: 10.1177/00037028251330654.
  • Georgiev, G. et al. Open Source for Raman Spectroscopy Data Harmonization. J. Raman Spectrosc. (2025) DOI: 10.1002/jrs.6789.
  • Tancheva, G. et al. High-throughput screening data generation, scoring and FAIRification: a case study on nanomaterials. J. Cheminform. 17, 59 (2025).

2024 

  • Di Battista, V. et al. Similarity of multicomponent nanomaterials in a safer-by-design context: the case of core–shell quantum dots. Environ. Sci. Nano 11, 924–941 (2024).
  • Groenewold, M. et al. Governance of advanced materials: Shaping a safe and sustainable future. NanoImpact 35, 100513 (2024).
  • Jeliazkova, N. et al. A template wizard for the cocreation of machine-readable data-reporting to harmonize the evaluation of (nano)materials. Nat. Protoc. (2024) DOI: 10.1038/s41596-024-00993-1.

2023 

  • Martens, M. et al. ELIXIR and Toxicology: a community in development. F1000Research 10, 1129 (2023).
  • Mancardi, G. et al. A computational view on nanomaterial intrinsic and extrinsic features for nanosafety and sustainability. Mater. Today 67, 344–370 (2023).
  • Furuhama, A. et al. Evaluation of QSAR models for predicting mutagenicity: outcome of the Second Ames/QSAR international challenge project. SAR QSAR Environ. Res. 34, 983–1001 (2023).
  • Jeliazkova, N., Kochev, N. & Tancheva, G. FAIR data model for chemical substances. Development challenges, management strategies and applications. in Data Integrity and Data Governance (2023) DOI: 10.5772/intechopen.110248.

2022 

  • Jeliazkova, N., Ma-Hock, L., Janer, G., Stratmann, H. & Wohlleben, W. Possibilities to group nanomaterials across different substances – A case study on organic pigments. NanoImpact 26, 100391 (2022).
  • Wyrzykowska, E. et al. Representing and describing nanomaterials in predictive nanoinformatics. Nat. Nanotechnol. 17, 924–932 (2022).
  • van Rijn, J. et al. European Registry of Materials: global, unique identifiers for (undisclosed) nanomaterials. J. Cheminform. 14, 57 (2022).
  • Basei, G., Rauscher, H., Jeliazkova, N. & Hristozov, D. A methodology for the automatic evaluation of data quality and completeness of nanomaterials for risk assessment purposes. Nanotoxicology 1–22 (2022) DOI: 10.1080/17435390.2022.2065222.

2021 

  • Kochev, N., Jeliazkova, N. & Tancheva, G. Ambit‐SLN: an Open Source Software Library for Processing of Chemical Objects via SLN Linear Notation. Mol. Inform. 40, 2100027 (2021).
  • Jeliazkova, N. et al. How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity. NanoImpact 100366 (2021) DOI: 10.1016/j.impact.2021.100366.
  • Jeliazkova, N. et al. Towards FAIR nanosafety data. Nat. Nanotechnol. 16, 644–654 (2021).

2020 

  • Kochev, N. et al. Your Spreadsheets Can Be FAIR: A Tool and FAIRification Workflow for the eNanoMapper Database. Nanomaterials 10, 1908 (2020).
  • Sturm, N. et al. Industry-scale application and evaluation of deep learning for drug target prediction. J. Cheminform. 12, 26 (2020).
  • Stone, V. et al. A framework for grouping and read-across of nanomaterials- supporting innovation and risk assessment. Nano Today 35, 100941 (2020).
  • Terziyski, A., Tenev, S., Jeliazkov, V., Jeliazkova, N. & Kochev, N. METER.AC: Live Open Access Atmospheric Monitoring Data for Bulgaria with High Spatiotemporal Resolution. Data 5, 36 (2020).
  • Mansouri, K. et al. CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. Environ. Health Perspect. 128, 027002 (2020).

2019 

  • Kochev, N. T., Paskaleva, V. H. & Jeliazkova, N. Automatic generation of molecular zwitterionic forms with Ambit-Zwitterion. Bulg. Chem. Commun. 51, (2019).
  • Terziyski, A. et al. Balloon-borne measurements in the upper troposphere and lower stratosphere above Bulgaria (N41-43° E24-26°). Bulg. Chem. Commun. 51, (2019).
  • Willighagen, E., Jeliazkova, N. & Guha, R. Journal of Cheminformatics, ORCID, and GitHub. J. Cheminform. 11, (2019).
  • de Bruyn Kops, C. et al. GLORY: Generator of the Structures of Likely Cytochrome P450 Metabolites Based on Predicted Sites of Metabolism. Front. Chem. 7, (2019).
  • Kochev, N., Paskaleva, V., Pukalov, O. & Jeliazkova, N. Ambit-GCM: An Open-source Software Tool for Group Contribution Modelling. Mol. Inform. (2019) DOI: 10.1002/minf.201800138.
  • Basei, G. et al. Making use of available and emerging data to predict the hazards of engineered nanomaterials by means of in silico tools: A critical review. NanoImpact 13, 76–99 (2019).
  • Jeliazkova, N. & Jeliazkov, V. CHAPTER 5. Making Big Data Available: Integrating Technologies for Toxicology Applications. in Big Data in Predictive Toxicology (Issues in Toxicology) (eds. Neagu, D. & Richarz, A.-N.) 166–184 (Royal Society of Chemistry, 2019) DOI: 10.1039/9781782623656-00166.
  • Kochev, N., Jeliazkova, N. & Tsakovska, I. CHAPTER 3. Chemoinformatics Representation of Chemical Structures – A Milestone for Successful Big Data Modelling in Predictive Toxicology. in Big Data in Predictive Toxicology (eds. Neagu, D. & Richarz, A.-N.) 69–107 (RSC Publishing, 2019) DOI: 10.1039/9781782623656-00069.

2018 

  • Karcher, S. et al. Integration among databases and data sets to support productive nanotechnology: Challenges and recommendations. NanoImpact 9, 85–101 (2018).
  • Honma, M. et al. Improvement of quantitative structure–activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR International Challenge Project. Mutagenesis (2018) DOI: 10.1093/mutage/gey031.
  • Mech, A. et al. Insights into possibilities for grouping and read-across for nanomaterials in EU chemicals legislation. Nanotoxicology 1–23 (2018) DOI: 10.1080/17435390.2018.1513092.
  • Kochev, N., Avramova, S. & Jeliazkova, N. Ambit-SMIRKS: a software module for reaction representation, reaction search and structure transformation. J. Cheminform. 10, 42 (2018).
  • Kochev N, Avramova S, Jeliazkova N: Ambit-SMIRKS: a software module for reaction representation, reaction search and structure transformation. J Cheminform 2018, 10:42. 

 

2017

  • Karcher, S.; Willighagen, E. L.; Rumble, J.; Ehrhart, F.; Evelo, C. T.; Fritts, M.; Gaheen, S.; Harper, S. L.; Hoover, M. D.; Jeliazkova, N.; et al. Integration among databases and data sets to support productive nanotechnology: Challenges and recommendations. NanoImpact 2017 DOI:10.1016/j.impact.2017.11.002.
  • Nymark, P.; Rieswijk, L.; Ehrhart, F.; Jeliazkova, N.; Tsiliki, G.; Sarimveis, H.; Evelo, C. T.; Hongisto, V.; Kohonen, P.; Willighagen, E.; et al. A data fusion pipeline for generating and enriching Adverse Outcome Pathway descriptions. Toxicol. Sci. 2017 DOI: 10.1093/toxsci/kfx252.
  • Puzyn, T.; Jeliazkova, N.; Sarimveis, H.; Marchese Robinson, R. L.; Lobaskin, V.; Rallo, R.; Richarz, A.-N.; Gajewicz, A.; Papadopulos, M. G.; Hastings, J.; et al. Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology. Food Chem. Toxicol. 2017 , DOI:10.1016/j.fct.2017.09.037.
  • Willighagen, E. L.; Mayfield, J. W.; Alvarsson, J.; Berg, A.; Carlsson, L.; Jeliazkova, N.; Kuhn, S.; Pluskal, T.; Rojas-Cherto, M.; Spjuth, O.; et al. The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J. Cheminform. 2017, 9, 33 DOI: 10.1186/s13321-017-0220-4.
  • J. Sun, N. Jeliazkova, V. Chupakin, J.-F. Golib-Dzib, O. Engkvist, L. Carlsson, J. Wegner, H. Ceulemans, I. Georgiev, V. Jeliazkov, N. Kochev, T. J. Ashby, and H. Chen, ExCAPE-DB: an integrated large scale dataset facilitating Big Data analysis in chemogenomics, J. Cheminform., vol. 9, no. 1, p. 17, Mar. 2017. 10.1186/s13321-017-0203-5
  • N. Jeliazkova and V. Jeliazkov, Making Big Data Available: Integrating Technologies for Toxicology Applications, in Big Data in Predictive Toxicology, D. Neagu and A. Richarz, Eds. RSC Publishing, 1 edition 2017 .
  • N. Kochev, I. Tsakovska, and N. Jeliazkova, Cheminformatics representation of chemical structures - a milestone for successful big data modelling, in Big Data in Predictive Toxicology, D. Neagu and A. Richarz, Eds. RSC Publishing, 1 edition 2017.

 

2016

2015

2014

2013

2012

2011

2010

  • Jeliazkova N., Jaworska J., Worth A. (2010) Chapter 17. Open Source Tools for Read-Across and Category Formation, In M. Cronin, & Madden J. (Eds.), In Silico Toxicology : Principles and Applications (pp. 408-445). Cambridge, UK: RSC Publishing
  • B. Hardy, N. Douglas, C. Helma, M. Rautenberg, N. Jeliazkova, V. Jeliazkov, I. Nikolova, R. Benigni, O. Tcheremenskaia, S. Kramer, T. Girschick, F. Buchwald, J. Wicker, A. Karwath, M. Gütlein, A. Maunz, H. Sarimveis, G. Melagraki, A. Afantitis, P. Sopasakis, D. Gallagher, V. Poroikov, D. Filimonov, A. Zakharov, A. Lagunin, T. Gloriozova, S. Novikov, N. Skvortsova, D. Druzhilovsky , S. Chawla, I. Ghosh, S. Ray, H. Patel, S. Escher, Collaborative Development of Predictive Toxicology Applications, Journal of Cheminformatics 2010, 2:7doi:10.1186/1758-2946-2-7.

2009

2008

2007

2005

2004 and earlier

Data mining, Pattern Recognition, Generalized Nets, Neural Networks

Internet, Networking

  • N. Jeliazkova, L. Iliev, V. Jeliazkov, PerfsonarUI – a Standalone Graphical User Interface for Querying perfSONAR Services, IEEE 2006 John Vincent Atanasoff International Symposium on Modern Computing, Sofia, Oct 3-5 2006
  • Egorov A., Nikolova N., Load balancing : A case study, in Proceedings of the 10th International Conference "Systems for Automation of Engineering and Research", (SAER '96), September 27-29, 1996, St. Konstantin resort, Varna, Bulgaria

Presentations

Cheminformatics, QSAR, Chemical Similarity, Resource Description Framework

2012

2011

2010

2009

2007

2006

2005

  • Nina Jeliazkova Chemical similarity ECB Workshop on Chemical Similarity and TTC approaches ,7-8 Nov 2005

2004

Network Performance Measurement, Representational State Transfer (REST) architecture

Book chapters

  • Jeliazkova, N. & Jeliazkov, V. CHAPTER 5. Making Big Data Available: Integrating Technologies for Toxicology Applications. in Big Data in Predictive Toxicology (Issues in Toxicology) (eds. Neagu, D. & Richarz, A.-N.) 166–184 (Royal Society of Chemistry, 2019) DOI: 10.1039/9781782623656-00166.
  • Kochev, N., Jeliazkova, N. & Tsakovska, I. CHAPTER 3. Chemoinformatics Representation of Chemical Structures – A Milestone for Successful Big Data Modelling in Predictive Toxicology. in Big Data in Predictive Toxicology (eds. Neagu, D. & Richarz, A.-N.) 69–107 (RSC Publishing, 2019) DOI: 10.1039/9781782623656-00069.
  • Willighagen E, Affentranger R, Grafström R, Hardy B, Jeliazkova N, Spjuth O et al. Chapter 2. Interactive predictive toxicology with Bioclipse and OpenTox. In: Harland L, Forster M, eds. Open Source Software in Life Science Research: Practical Solutions to Common Challenges in the Pharmaceutical Industry and Beyond. Woodhead Publishing Series in Biomedicine; 2012:35–61.
  • Boyanov K, Tourlakov Ch., Simeonov A., Boyanow L., Yanev S., Nikolova N., Boyadjiev Y., Genchev G., "Computer Networks. Internet", Sofia, 1998, in Bulgarian
  • Boyanov K, Tourlakov Ch., Simeonov A., Boyanow L., Yanev S., Nikolova N., Boyadjiev Y., Genchev G., "Internetworking. Network Principles, Protocols and Administration", Sofia, 1996, in English.