Cheminformatics, QSAR, RDF, Chemical databases, Web services
2025
Filipovska, J. et al. P18-65 Advancing the Grouping and Harmonization of Similar Key Events in the AOP Wiki: Ontology-Based Key Event Component Combinations as Catalysts for Integration. Toxicol. Lett. 411, S214–S215 (2025).
Coca-Lopez, N. et al. Open and FAIR Raman spectroscopy. Paving the way for artificial intelligence. Preprint (2025) DOI: 10.26434/chemrxiv-2025-0q2mt.
Lellinger, D. et al. An Interlaboratory Study to Minimize Wavelength Calibration Uncertainty Due to Peak Fitting of Reference Material Spectra in Raman Spectroscopy. Appl. Spectrosc. (2025) DOI: 10.1177/00037028251330654.
Georgiev, G. et al. Open Source for Raman Spectroscopy Data Harmonization. J. Raman Spectrosc. (2025) DOI: 10.1002/jrs.6789.
Tancheva, G. et al. High-throughput screening data generation, scoring and FAIRification: a case study on nanomaterials. J. Cheminform. 17, 59 (2025).
2024
Di Battista, V. et al. Similarity of multicomponent nanomaterials in a safer-by-design context: the case of core–shell quantum dots. Environ. Sci. Nano 11, 924–941 (2024).
Groenewold, M. et al. Governance of advanced materials: Shaping a safe and sustainable future. NanoImpact 35, 100513 (2024).
Jeliazkova, N. et al. A template wizard for the cocreation of machine-readable data-reporting to harmonize the evaluation of (nano)materials. Nat. Protoc. (2024) DOI: 10.1038/s41596-024-00993-1.
2023
Martens, M. et al. ELIXIR and Toxicology: a community in development. F1000Research 10, 1129 (2023).
Mancardi, G. et al. A computational view on nanomaterial intrinsic and extrinsic features for nanosafety and sustainability. Mater. Today 67, 344–370 (2023).
Furuhama, A. et al. Evaluation of QSAR models for predicting mutagenicity: outcome of the Second Ames/QSAR international challenge project. SAR QSAR Environ. Res. 34, 983–1001 (2023).
Jeliazkova, N., Kochev, N. & Tancheva, G. FAIR data model for chemical substances. Development challenges, management strategies and applications. in Data Integrity and Data Governance (2023) DOI: 10.5772/intechopen.110248.
2022
Jeliazkova, N., Ma-Hock, L., Janer, G., Stratmann, H. & Wohlleben, W. Possibilities to group nanomaterials across different substances – A case study on organic pigments. NanoImpact 26, 100391 (2022).
Wyrzykowska, E. et al. Representing and describing nanomaterials in predictive nanoinformatics. Nat. Nanotechnol. 17, 924–932 (2022).
van Rijn, J. et al. European Registry of Materials: global, unique identifiers for (undisclosed) nanomaterials. J. Cheminform. 14, 57 (2022).
Basei, G., Rauscher, H., Jeliazkova, N. & Hristozov, D. A methodology for the automatic evaluation of data quality and completeness of nanomaterials for risk assessment purposes. Nanotoxicology 1–22 (2022) DOI: 10.1080/17435390.2022.2065222.
2021
Kochev, N., Jeliazkova, N. & Tancheva, G. Ambit‐SLN: an Open Source Software Library for Processing of Chemical Objects via SLN Linear Notation. Mol. Inform. 40, 2100027 (2021).
Jeliazkova, N. et al. How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity. NanoImpact 100366 (2021) DOI: 10.1016/j.impact.2021.100366.
Jeliazkova, N. et al. Towards FAIR nanosafety data. Nat. Nanotechnol. 16, 644–654 (2021).
2020
Kochev, N. et al. Your Spreadsheets Can Be FAIR: A Tool and FAIRification Workflow for the eNanoMapper Database. Nanomaterials 10, 1908 (2020).
Sturm, N. et al. Industry-scale application and evaluation of deep learning for drug target prediction. J. Cheminform. 12, 26 (2020).
Stone, V. et al. A framework for grouping and read-across of nanomaterials- supporting innovation and risk assessment. Nano Today 35, 100941 (2020).
Terziyski, A., Tenev, S., Jeliazkov, V., Jeliazkova, N. & Kochev, N. METER.AC: Live Open Access Atmospheric Monitoring Data for Bulgaria with High Spatiotemporal Resolution. Data 5, 36 (2020).
Mansouri, K. et al. CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. Environ. Health Perspect. 128, 027002 (2020).
2019
Kochev, N. T., Paskaleva, V. H. & Jeliazkova, N. Automatic generation of molecular zwitterionic forms with Ambit-Zwitterion. Bulg. Chem. Commun. 51, (2019).
Terziyski, A. et al. Balloon-borne measurements in the upper troposphere and lower stratosphere above Bulgaria (N41-43° E24-26°). Bulg. Chem. Commun. 51, (2019).
Willighagen, E., Jeliazkova, N. & Guha, R. Journal of Cheminformatics, ORCID, and GitHub. J. Cheminform. 11, (2019).
de Bruyn Kops, C. et al. GLORY: Generator of the Structures of Likely Cytochrome P450 Metabolites Based on Predicted Sites of Metabolism. Front. Chem. 7, (2019).
Kochev, N., Paskaleva, V., Pukalov, O. & Jeliazkova, N. Ambit-GCM: An Open-source Software Tool for Group Contribution Modelling. Mol. Inform. (2019) DOI: 10.1002/minf.201800138.
Basei, G. et al. Making use of available and emerging data to predict the hazards of engineered nanomaterials by means of in silico tools: A critical review. NanoImpact 13, 76–99 (2019).
Jeliazkova, N. & Jeliazkov, V. CHAPTER 5. Making Big Data Available: Integrating Technologies for Toxicology Applications. in Big Data in Predictive Toxicology (Issues in Toxicology) (eds. Neagu, D. & Richarz, A.-N.) 166–184 (Royal Society of Chemistry, 2019) DOI: 10.1039/9781782623656-00166.
Kochev, N., Jeliazkova, N. & Tsakovska, I. CHAPTER 3. Chemoinformatics Representation of Chemical Structures – A Milestone for Successful Big Data Modelling in Predictive Toxicology. in Big Data in Predictive Toxicology (eds. Neagu, D. & Richarz, A.-N.) 69–107 (RSC Publishing, 2019) DOI: 10.1039/9781782623656-00069.
2018
Karcher, S. et al. Integration among databases and data sets to support productive nanotechnology: Challenges and recommendations. NanoImpact 9, 85–101 (2018).
Honma, M. et al. Improvement of quantitative structure–activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR International Challenge Project. Mutagenesis (2018) DOI: 10.1093/mutage/gey031.
Mech, A. et al. Insights into possibilities for grouping and read-across for nanomaterials in EU chemicals legislation. Nanotoxicology 1–23 (2018) DOI: 10.1080/17435390.2018.1513092.
Kochev, N., Avramova, S. & Jeliazkova, N. Ambit-SMIRKS: a software module for reaction representation, reaction search and structure transformation. J. Cheminform. 10, 42 (2018).
Karcher, S.; Willighagen, E. L.; Rumble, J.; Ehrhart, F.; Evelo, C. T.; Fritts, M.; Gaheen, S.; Harper, S. L.; Hoover, M. D.; Jeliazkova, N.; et al. Integration among databases and data sets to support productive nanotechnology: Challenges and recommendations. NanoImpact 2017 DOI:10.1016/j.impact.2017.11.002.
Nymark, P.; Rieswijk, L.; Ehrhart, F.; Jeliazkova, N.; Tsiliki, G.; Sarimveis, H.; Evelo, C. T.; Hongisto, V.; Kohonen, P.; Willighagen, E.; et al. A data fusion pipeline for generating and enriching Adverse Outcome Pathway descriptions. Toxicol. Sci. 2017 DOI: 10.1093/toxsci/kfx252.
Puzyn, T.; Jeliazkova, N.; Sarimveis, H.; Marchese Robinson, R. L.; Lobaskin, V.; Rallo, R.; Richarz, A.-N.; Gajewicz, A.; Papadopulos, M. G.; Hastings, J.; et al. Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology. Food Chem. Toxicol. 2017 , DOI:10.1016/j.fct.2017.09.037.
N. Jeliazkova and V. Jeliazkov, Making Big Data Available: Integrating Technologies for Toxicology Applications, in Big Data in Predictive Toxicology, D. Neagu and A. Richarz, Eds. RSC Publishing, 1 edition 2017 .
N. Kochev, I. Tsakovska, and N. Jeliazkova, Cheminformatics representation of chemical structures - a milestone for successful big data modelling, in Big Data in Predictive Toxicology, D. Neagu and A. Richarz, Eds. RSC Publishing, 1 edition 2017.
Jeliazkova, N., Doganis, P., Fadeel, B., Grafstrom, R., Hastings, J., Jeliazkov, V., Kohonen, P., Munteanu, C.R., Sarimveis, H., Smeets, B., Tsiliki, G., Vorgrimmler, D., Willighagen. E., The first eNanoMapper prototype: a substance database to support safe-by-design, 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1–9). doi:10.1109/BIBM.2014.6999367
Hardy B., Apic G., Carthew P, Clark D., Cook D., Dix I., Escher S., Hastings J., Heard D.J., Jeliazkova N., Judson P., Matis-Mitchell S., Mitic D., Myatt G., Shah I., Spjuth O., Tcheremenskaia O., Toldo L., Watson D., White A., Yang C., Toxicology Ontology Perspectives, ALTEX-Alternatives to Animal Experimentation, 2012, 29(2);139- 156.
Hardy B., Apic G., Carthew P, Clark D., Cook D., Dix I., Escher S., Hastings J., Heard D.J., Jeliazkova N., Judson P., Matis-Mitchell S., Mitic D., Myatt G., Shah I., Spjuth O., Tcheremenskaia O., Toldo L., Watson D., White A., Yang C., A Toxicology Ontology Roadmap, ALTEX-Alternatives to Animal Experimentation, 2012, 29(2);129-137.
Noel M O'Boyle , Rajarshi Guha , Egon L Willighagen , Samuel E Adams , Jonathan Alvarsson , Jean-Claude Bradley , Igor V Filippov , Robert M Hanson , Marcus D Hanwell , Geoffrey R Hutchison , Craig A James , Nina Jeliazkova , Andrew SID Lang , Karol M Langner , David C Lonie , Daniel M Lowe , Jerome Pansanel , Dmitry Pavlov , Ola Spjuth , Christoph Steinbeck , Adam L Tenderholt , Kevin J Theisen and Peter Murray-Rust, Open Data,
Open Source and Open Standards in chemistry: The Blue Obelisk five years on Journal of Cheminformatics2011, 3:37, doi:10.1186/1758-2946-3-37
Jeliazkova N., Jaworska J., Worth A. (2010) Chapter 17. Open Source Tools for Read-Across and Category Formation, In M. Cronin, & Madden J. (Eds.),In Silico Toxicology : Principles and Applications(pp. 408-445). Cambridge, UK: RSC Publishing
B. Hardy, N. Douglas, C. Helma, M. Rautenberg, N. Jeliazkova, V. Jeliazkov, I. Nikolova, R. Benigni, O. Tcheremenskaia, S. Kramer, T. Girschick, F. Buchwald, J. Wicker, A. Karwath, M. Gütlein, A. Maunz, H. Sarimveis, G. Melagraki, A. Afantitis, P. Sopasakis, D. Gallagher, V. Poroikov, D. Filimonov, A. Zakharov, A. Lagunin, T. Gloriozova, S. Novikov, N. Skvortsova, D. Druzhilovsky , S. Chawla, I. Ghosh, S. Ray, H. Patel, S. Escher,
Collaborative Development of Predictive Toxicology Applications, Journal of Cheminformatics 2010, 2:7doi:10.1186/1758-2946-2-7.
N. Kochev, O. Pukalov, G. Andreev, N. Jeliazkova; Software Module For Prediction Of Molar Refractivity; Scientific Researches of The Union of Scientists in Bulgaria - Plovdiv, Series B, "Natural Sciences and the Humanities" 2008, Vol X, 225-228.
Jaworska J., Dimitrov S., Nikolova N., Mekenyan O., Probabilistic assessment of biodegradability based on metabolic pathways: CATABOL system., SAR and QSAR in Environmental Research, 2002 vol. 13(2), pp. 307-323
Hadjitodorov S., Nikolova N.,Generalized net model of the self-organizing map of Kohonen classical training procedure", Advances in Modelling & Analysis, 2000, 1-B, Vol. 43
Mateev, Pl., N. Nikolova and G. Angelova. Text Categorisation in an Internet Application for Document Management. Proc. Text Mining Workshop, IJCAI-99, Stockholm, August 1999.
Egorov A., Nikolova N., Load balancing : A case study, in Proceedings of the 10th International Conference "Systems for Automation of Engineering and Research", (SAER '96), September 27-29, 1996, St. Konstantin resort, Varna, Bulgaria
Nina Jeliazkova Life sciences data defragmentation: a case study, 6th International Symposium on Computational Methods in Toxicology and Pharmacology Integrating Internet Resources, Maribor, Slovenia, 3-7 Sep 2011.
Tcheremenskaia O., Benigni R., Nikolova I., Jeliazkova N., Escher S.E., Grimm H., Baier T., Poroikov V., OpenTox Predictive Toxicology Framework: toxicological ontology and semantic media wiki-based OpenToxipedia, Proceedings fromBioOntologies2011.
Nina Jeliazkova, OpenTox framework for predictive toxicology, Biomathematics Workshop, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria, May 26-27 2010.
Jeliazkova, N. & Jeliazkov, V. CHAPTER 5. Making Big Data Available: Integrating Technologies for Toxicology Applications. in Big Data in Predictive Toxicology (Issues in Toxicology) (eds. Neagu, D. & Richarz, A.-N.) 166–184 (Royal Society of Chemistry, 2019) DOI: 10.1039/9781782623656-00166.
Kochev, N., Jeliazkova, N. & Tsakovska, I. CHAPTER 3. Chemoinformatics Representation of Chemical Structures – A Milestone for Successful Big Data Modelling in Predictive Toxicology. in Big Data in Predictive Toxicology (eds. Neagu, D. & Richarz, A.-N.) 69–107 (RSC Publishing, 2019) DOI: 10.1039/9781782623656-00069.